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Results of large scale nonequilibrium molecular dynamics simulations are presented for nanoparticles in an
explicit solvent. The nanoparticles are modeled as a uniform distribution of Lennard-Jones particles, while the
solvent is represented by standard Lennard-Jones particles. We present results for the shear rheology of
spherical nanoparticles of diameter 10 times that of the solvent for a range of nanoparticle volume fractions. By
varying the strength of the interactions between nanoparticles and with the solvent, this system can be used to
model colloidal gels and glasses as well as hard spherelike nanoparticles. Effect of including the solvent
explictly is demonstrated by comparing the pair correlation function of nanoparticles to that in an implicit
solvent. The shear rheology for dumbbell nanoparticles made of two fused spheres is similar to that of single
nanoparticle.
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The rheological properties of colloidal suspensions have
been well studied �1�. For weakly interacting colloidal par-
ticles, the suspension is well described as a system of hard
spheres, while increasing the interaction gives rise to colloi-
dal gels and glasses. Since the size of the colloidal particle is
much larger than the solvent, there is a clear separation of
time and length scales between the colloidal particles and the
solvent. This allows one to coarse grain the solvent and treat
it as a continuum. However as the size of the colloidal par-
ticles are reduced to the range of what is now commonly
referred to as nanoparticles, namely, 2–20 nm, treating the
background implicitly is not adequate. For example, treating
the solvent as a continuum does not account for local pack-
ing of the solvent around the nanoparticles, which can in-
crease their effective radii. This can modify the effective
interactions between nanoparticles, strongly affecting both
the structure and dynamics of the suspension. To address
such simple questions as to how large should the nanopar-
ticles be to treat the solvent as a continuum or how do
changes in the relative interactions between nanoparticles
and between nanoparticles and the solvent affect the suspen-
sion rheology, it is important to develop a computationally
tractable model of nanoparticle suspensions in which the sol-
vent is treated explicitly.

Most models treat colloidal particles as hard spheres.
However, this approach is not suitable for modeling colloids
in an explicit solvent since hard spheres strongly phase sepa-
rate even for relatively small differences in size �2�. Most
hard sphere simulations have treated the solvent implicitly,
usually by Brownian dynamics �3�. Stokesian dynamics �4�
and related methods �5� include hydrodynamic interactions
for the case of implicit solvent. Alternatively one can coarse
grain the solvent by either lattice Boltzmann methods �6�,
dissipative particles �7� or stochastic rotational dynamics �8�.
Each of these particle based methods introduces an effective
coarse-graining length scale that is smaller than the colloids
but much larger than the natural length scales of the solvent.
None of them apply in the limit of interest here, namely,
when the nanoparticles are comparable in size to the solvent.

To solvate the nanoparticles in an explicit solvent, it is
critical to include an attractive component of the interaction

between the nanoparticle and the solvent. The simplest effec-
tive potential is a Lennard-Jones �LJ� interaction shifted to
the surface of the nanoparticle �9�. However, this potential
does not capture the true interaction between nanoparticles as
the range for which the interactions are important becomes
increasingly small with increasing particle size. A more real-
istic approach is to treat each nanoparticle as being made of
a uniform distribution of atoms, similar to treating them as a
collection of atoms. In this case the effective potential can
usually be determined analytically �10,11�. Integrated poten-
tials are computational efficient, although the ability to freely
choose shapes is traded for use of symmetrical shapes such
as ellipsoids or spheres.

Here nanoparticles are assumed to consist of a uniform
distribution of particles interacting with a Lennard-Jones in-
teraction

ULJ�r� = 4�nn���n

r
�12

− ��n

r
�6� , �1�

where r is the distance between two atoms. �nn is the inter-
action energy and �n is the diameter of the LJ atoms which
make up each nanoparticle. For spherical nanoparticles, the
total interaction between nanoparticles can then be deter-
mined analytically by integrating over all the interacting LJ
atoms within the two particles �10�. The total interaction be-
tween nanoparticles Unn�r�=Unn

A �r�+Unn
R �r�. Unn

A �r� is the
standard attractive interaction between colloidal particles,
first derived by Hamaker �12�. For particles of equal radii a,

Unn
A �r� = −

Ann

6
� 2a2

r2 − 4a2 +
2a2

r2 + ln� r2 − 4a2

r2 �� . �2�

The Hamaker constant Ann=4�2�nn�1�2�n
6, where �1 and �2

are the number density of LJ atoms within each sphere. The
repulsive component of the interaction Unn

R �r� is �10�
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Equations �2� and �3� reduce to the standard LJ potential, Eq.
�1�, in the limit a→0 and 4

3�a3�i=1.
The interaction Uns�r� between the LJ solvent atoms and

the nanoparticle is determined by integrating the interaction
between a LJ solvent atom and the LJ atoms within the par-
ticle,

Uns�r� =
2a3�ns

3 Ans

9�a2 − r2�3�1 −
�5a6 + 45a4r2 + 63a2r4 + 15r6��ns

6

15�a − r�6�a + r�6 � ,

�4�

where Ans=24��ns�1�ns
3 . Here �ns is the interaction between

a solvent atom and an atom in the nanoparticle and �ns
= ��n+�s� /2, where �s is the size of a LJ solvent atom. The
interaction between solvent atoms is the same Lennard-Jones
interaction given in Eq. �1� with �ss=� and �s=�. Note that,
unlike most interaction potentials, Unn�r� and Uns�r� depend
on both the size of the atoms making up the nanoparticle �n
and the radii of the nanoparticle a.

Depending on the values of the Hamaker constant, the
nanoparticles can either be dispersed in the solvent or aggre-
gate. For nanoparticles made of the same Lennard-Jones at-
oms as the solvent ��nn=�ns=� and �n=��, we find that the
nanoparticles and solvent phase separate for all values of the
density �1 of atoms which make up a nanoparticle. To solvate
the nanoparticles, the interaction strength �ns has to be in-
creased relative to �nn. For �nn=� simulations were run for
several values of �ns. We found that �ns=3� was not suffi-
cient to avoid phase separation, while �ns=6� was. As further
increase of �ns gave an unphysical situation in which a layer
or two of solvent atoms were attached to each nanoparticle,
we chose to run all the simulations with �ns=6�.

We chose to study three values for the nanoparticle/
nanoparticle interaction strength. For the first, we considered
that each nanoparticle was made of a LJ solid which has a
density �1�3=1. This gives Ann=4�2� which corresponds to
a very strong interaction between the solvent and the nano-
particles, resulting in a colloidal gel. For nanoparticles of the

same density as the pure solvent �1�3=0.57, the Hamaker
constant is reduced significantly, Ann=12.9�. However, in
most nanoparticle suspensions, the nanoparticles are coated
with short surfactants to avoid flocculation. This can be mod-
eled by reducing Ann further. For example, Ann=�, as shown
below, describes a hard spherelike nanoparticle suspension
for a=5�. For reference, the melting temperature for pure
nanoparticles of radii a=5� is approximately 0.12–0.13Ann.
Here we study how the structure and viscosity of the nano-
particle suspensions depend on the presence of the solvent
for a=5�.

All molecular dynamics simulations were performed us-
ing the LAMMPS simulation package �13�. Recent improve-
ments to the algorithm �14�, including multiregion neighbor
lists and enhanced communications, have made the simula-
tions presented here possible. For example, the speed up over
previous versions of the code for nanoparticles of radii a
=10� in an explicit solvent of LJ atoms is 200–400 times
depending on nanoparticle concentration. Each configuration
is prepared by combining a nanoparticle suspension in an
implicit solvent with an equilibrated pure solvent of
Lennard-Jones particles. The pure solvent and nanoparticle
suspensions are merged by removing any solvent monomers
that overlap a nanoparticle. This configuration is then equili-
brated in an NPT ensemble for T=� /kB and P=0.1� /�3 to
ensure a homogeneous suspension. The equilibrium simula-
tions for the two pure systems are the same as in the case for
the mixture, namely Newton’s equations of motion were in-
tegrated using a velocity-Verlet algorithm coupled weakly to
a heat bath �15� with a damping constant �=0.01�−1. The
integration time step 	t=0.005�, where �=��m /��1/2. All re-
sults presented here are for an NVT ensemble. To ensure all
the results are in equilibrium, at least 106 time steps were
discarded at the beginning of each run. To reduce the number
of parameters we set �n=�s=� and mass mn= 4

3�a3�1m with
�1�3=1.0 throughout, where m is the mass of the solvent.

The interactions between LJ atoms were cutoff at rc
=3.0�, between nanoparticles at 5a and between LJ solvent
atoms and nanoparticles at a+4.0�. The number of nanopar-
ticles varied from Nn=40 to 750 and LJ solvent atoms from
a few thousand to six hundred thousand depending on the
volume fraction 
v=Nn

4
3�a3 /V of nanoparticles. Note this

definition of 
v slightly underestimates the volume fraction
since Unn�r�=0 for r=10.44��2a for a=5� unlike the case
of two LJ monomers where ULJ�r�=0 for r=�. However,

(a) (b)

FIG. 1. �Color online� Sample
simulation cell for N=500 nano-
particles of radii a=5� for 
v
=0.25 in an explicit solvent for �a�
monomers and �b� dimers. Solvent
is shown as points.
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since the separation r where Unn�r�=0 depends on the nano-
particle radii a, this is a convenient definition. For the dimer
system, pairs of nanoparticles are constrained to have a fixed
bond length bn=� using the SHAKE algorithm. Sample con-
figurations for a monomer and dimer system for a=5� and

v=0.25 are shown in Fig. 1. The nanoparticle suspensions
were sheared with the SLLOD equations of motion �16� with
a weak damping constant �=0.01�−1.

The effect of including the solvent on the nanoparticle-
nanoparticle pair correlations function gnn�r� is shown in Fig.
2 for the hard spherelike nanoparticles �Ann=�� for an ex-
plicit and implicit solvent. Note that the first peak in g�r� is
higher for the explicit solvent and shifted to larger separa-
tions than for an implicit solvent. The solvent forms a layer
near the nanoparticles, so that two nanoparticles cannot ap-
proach as closely as in the case of an implicit solvent, result-
ing in an effective nanoparticle radius which is greater than
a. This result for the implicit solvent and the fact that the
melting temperature for this case is approximately 0.12� jus-
tifies our calling this case hard spherelike. Increasing Ha-
maker constants increases the correlations between nanopar-
ticles and with the solvent. For the strongest interaction case
Ann=4�2�, Ans=450�, a layer of solvent particles are essen-

tially bound to each nanoparticle resulting in an almost zero
probability that two nanoparticles are ever closer than
	12.2�. From visual observation of the configurations, these
systems form a colloid gel with a nonuniform distribution of
nanoparticles.

The effect of varying the Hamaker constant on the diffu-
sion constant D of the nanoparticles is shown in Fig. 3. The
result for D at low concentrations is in agreement with the no
slip Stokes-Einstein result D=kBT / �6��sa�=0.0105�2 /�,
where �s=1.010.03m /�� is the viscosity of the pure sol-
vent. The effect of varying the Hamaker constants on the
shear rheology is shown in Fig. 4. Increasing interactions
results in enhanced viscosity. For the strongest interacting
case the suspension is in the shear thinning regime for all
accessible shear rates.

In Fig. 5 we present results for a range of concentrations
for hard spherelike monomers and dimers. Above 
v	0.39
the monomer nanoparticle suspension crystallizes while the
dimers do not. The liquid/solid transition point is slightly
lower than for hard spheres �
v=0.494�. This is partially due
to the fact that there is a weak interactions between the nano-
particles and underestimation of the volume fraction �radius�.
For the highest concentrations for the dimers there is evi-
dence of a shear thickening regime. For 
v�0.34, the vis-
cosity reaches a plateau at low shear rates and we can extract

FIG. 3. Diffusion constant D versus volume fractions 
v for
radii a=5� for Ann=�, Ans=72� �circles� and Ann=12.9�, Ans

=258� �squares�.

FIG. 4. Viscosity as a function of shear rate for volume fractions

v=0.25 for radii a=5� for Ann=�, Ans=72� �circles�; Ann=12.9�,
Ans=258� �squares�; and Ann=4�2�, Ans=450� �triangles�.

FIG. 2. �Color online� Nanoparticle-nanoparticle pair correlation
functions g�r� for nanoparticles of radii a=5� for volume fractions

v=0.12 �dotted-dashed�, 0.25 �dashed�, and 0.39 �solid� for Ann

=�, Ans=72� with explicit solvent �black� and implicit solvent �red�.
The three curves for the implicit solvent are the ones with their first
peak near r�
10.4.

FIG. 5. Viscosity as a function of shear rate for monomers
�
v�0.39� �closed� and dimers �open� for Ann=�, Ans=72� for

v=0.12 �circle�, 0.25 �square�, 0.31 �triangle�, 0.39 �diamond�,
0.49 �inverted triangle�, 0.54 �cross�, and 0.56 �plus�.
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the zero shear rate viscosity, which is shown in Fig. 6. Also
shown are the experimental results for hard sphere colloids
�17�. We fit the viscosity to the expressions of Krieger and
Dougherty �18�, � /�s= �1−
v /
c�−2.5
c and Quemada �19�,
� /�s= �1−
v /
c�−2. For hard sphere colloids, 
c is between
0.57 and 0.63, the hard sphere glass transition and dense
random packing fraction, respectively. Fitting the zero shear
rate data to the Krieger Dougherty expression gives 
c
=0.39, whereas the Quemada expression yields 
c=0.43.
Clearly the fits severely underestimate 
c. Since the

nanoparticle-nanoparticle potential is nonzero at the defined
nanoparticle radius 
v slightly underestimates the volume
fraction. Also as seen in Fig. 2 there is a weak solvation shell
around the nanoparticles limiting the how close the nanopar-
ticles approach each other, increasing the effective volume
fraction especially for low 
v. Adjusting the effective radii of
the nanoparticle using the onset of the first peak in the nano-
particle pair correlation function, the best fit for 
c=0.49 and
0.53 for the Krieger-Dougherty and Quemada expressions,
respectively.

Here we have presented a computationally tractable
model for simulating nanoparticle suspensions in an explicit
solvent. By varying the interaction between nanoparticles
and with the solvent the model can be used to study colloidal
gels and glasses as well as hard-sphere-like suspensions. Re-
sults of the simulations clearly show that including the sol-
vent explicitly has important effects on both the structure and
dynamics of nanoparticle suspensions. The minimum nano-
particle size at which the solvent can be treated as a con-
tinuum depends not only on the size of the nanoparticle but
also the strength of the interaction Ans between the nanopar-
ticle and the solvent since it effects the size of the solvation
shell around the nanoparticle. These two effects will be ex-
plored in future publications.
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